US 2006/0026353 Al

[0030] The JVM 108 generally comprises a combination
of software and hardware. The software may include the
compiler 110 and the hardware may include the JSM 102.
The JVM may include a class loader, bytecode verifier,
garbage collector, and a bytecode interpreter loop to inter-
pret the bytecodes that are not executed on the JSM pro-
cessor 102.

[0031] FIG. 3 shows an exemplary block diagram of the
JSM 102. As shown, the JSM includes a core 120 coupled
to data storage 122 and instruction storage 130. The core
may include one or more components as shown. Such
components preferably include a plurality of registers 140,
three address generation units (“AGUs”) 142, 147, micro-
translation lookaside buffers (micro-TLBs) 144, 156, a
multi-entry micro-stack 146, an arithmetic logic unit
(“ALU”) 148, a multiplier 150, decode logic 152, and
instruction fetch logic 154. In general, operands may be
retrieved from data storage 122 or from the micro-stack 146,
processed by the ALU 148, while instructions may be
fetched from instruction storage 130 by fetch logic 154 and
decoded by decode logic 152. The address generation unit
142 may be used to calculate addresses based, at least in part
on data contained in the registers 140. The micro-TLBs 144,
156 generally perform the function of a cache for the address
translation and memory protection information bits that are
preferably under the control of the operating system running
on the MPU 104.

[0032] Referring now to FIG. 4, the registers 140 may
include 16 registers designated as R0-R15. All registers are
32-bit registers in accordance with the preferred embodi-
ment of the invention. Registers RO-R5 and R8-R14 may be
used as general purpose (“GP”) registers, thereby usable for
any purpose by the programmer. Other registers, and at least
one of the GP purpose registers, may be used for specific
functions. For example, in addition to use as a GP register,
register RS may be used to store the base address of a portion
of memory in which Java local variables may be stored when
used by the current Java method. The top of the micro-stack
146 is reflected in registers R6 and R7. The top of the
micro-stack has a matching address in memory pointed to by
register R6. The values contained in the micro-stack are the
latest updated values, while their corresponding values in
memory may or may not be up to date. Register R7 provides
the data value stored at the top of the micro-stack. Register
R15 is used for status and control of the JSM 102. Other
registers may also be provided in the JSM 102, such as one
or more auxiliary registers in the decode logic 152.

[0033] Referring again to FIG. 3, as noted above, the JSM
102 is adapted to process and execute instructions from a
stack-based instruction set that may include Java Bytecodes.
Java Bytecodes pop, unless empty, data from and push data
onto the micro-stack 146. The micro-stack 146 preferably
comprises the top n entries of a larger stack that is imple-
mented in data storage 122.

[0034] The data storage 122 generally comprises data
cache (“D-cache”) 124 and a data random access memory
(“D-RAMset”) 126. The D-RAMset (or simply “RAMset”)
126 preferably comprises one “way” of the multi-way cache.
Reference may be made to co-pending applications U.S. Ser.
No. 09/591,537 filed Jun. 9, 2000 (atty docket TI-29884),
U.S. Ser. No. 09/591,656 filed Jun. 9, 2000 (atty docket
TI-29960), and U.S. Ser. No. 09/932,794 filed Aug. 17, 2001

Feb. 2, 2006

(atty docket TI-31351), all of which are incorporated herein
by reference. The stack (excluding the micro-stack 146),
arrays and non-critical data may be stored in the D-cache
124, while Java local variables and associated pointers as
explained below, as well as critical data and non-Java
variables (e.g., C, C++) may be stored in D-RAMset 126.
The instruction storage 130 may comprise instruction RAM
(“I-RAMset”) 132 and instruction cache (“I-cache”) 134.
The I-RAMset 132 may be used to store “complex™ micro-
sequenced Bytecodes or micro-sequences or predetermined
sequences of code.

[0035] In accordance with a preferred embodiment of the
invention, at least some applications executed by the JSM
102 comprise one or more methods. A “method” includes
executable instructions and performs one or more functions.
Other terms for “method” may include subroutines, code
segments, and functions, and the term should not be used to
narrow the scope of this disclosure.

[0036] A method (the “calling” method) may call another
method (the “called” method). Once the called method
performs its function, program control returns to the calling
method. Multiple hierarchical levels of methods are possible
as illustrated in FIG. 5 which illustrates the interaction
between three methods (Method A, Method B, and Method
C). For purposes of the example of FIG. 5, method A calls
method B and method B calls method C. As such, method A
is the calling method for method B which is the called
method relative to method A. Similarly, method B is the
calling method relative to method C which is considered the
called method relative to method B.

[0037] A method may have one or more “local variables,”
as explained previously. Local variables may be used to
temporarily store data or other information as the method
performs its task(s). The local variables preferably are
specific to the method to which the variables pertain. That is,
method A’s local variables (“LVA”) are accessible generally
by only method A and have meaning only to method A. Once
method A completes, the method A local variables become
meaningless. Similarly, LVB and LVC comprise local vari-
ables associated with methods B and C, respectively. Java
Bytecodes refer to local variables using an index. The JVM
maintains a local variables pointer (“PTR LV”) which points
to the base address of the memory containing the current
method’s local variables. To access a particular local vari-
able, a suitable index value is added to the base address to
obtain the address of the desired local variable. In general,
the local variables associated with one method may have a
different size than the local variables associated with another
method.

[0038] FIG. 5 generally shows the state of the D-RAMset
126 in accordance with a time sequence of events 500, 510,
and 520 as each method B and C is invoked. In sequence
500, method A is invoked and storage space 502 is allocated
for its local variables (LVA). A base pointer (PTR LVA) 504
also is determined or selected to point to the base portion of
LVA storage space 502. Using the pointer PTR LVA, refer-
ences may be made to any local variable within method A’s
local variable set 502 by computing an index or offset to the
PTR LVA value.

[0039] Although a plurality of methods may run on the
JSM 102, typically only one method is “active” at a time
having its instructions actively being executed by the JSM



